An integer optimization approach for reverse engineering of gene regulatory networks
نویسندگان
چکیده
منابع مشابه
Reverse engineering of gene regulatory networks.
Systems biology is a multi-disciplinary approach to the study of the interactions of various cellular mechanisms and cellular components. Owing to the development of new technologies that simultaneously measure the expression of genetic information, systems biological studies involving gene interactions are increasingly prominent. In this regard, reconstructing gene regulatory networks (GRNs) f...
متن کاملSystem Identification methods for Reverse Engineering Gene Regulatory Networks
With the advent of high throughput measurement technologies, large scale gene expression data are available for analysis. Various computational methods have been introduced to analyze and predict meaningful molecular interactions from gene expression data. Such patterns can provide an understanding of the regulatory mechanisms in the cells. In the past, system identification algorithms have bee...
متن کاملReverse Engineering of Gene Regulatory Networks: A Comparative Study
Reverse engineering of gene regulatory networks has been an intensively studied topic in bioinformatics since it constitutes an intermediate step from explorative to causative gene expression analysis. Many methods have been proposed through recent years leading to a wide range of mathematical approaches. In practice, different mathematical approaches will generate different resulting network s...
متن کاملReverse Engineering Gene Regulatory Networks Using Sampling and Boosting Techniques
Reverse engineering gene regulatory networks (GRNs), also known as network inference, refers to the process of reconstructing GRNs from gene expression data. Biologists model a GRN as a directed graph in which nodes represent genes and links show regulatory relationships between the genes. By predicting the links to infer a GRN, biologists can gain a better understanding of regulatory circuits ...
متن کاملReverse engineering gene regulatory networks from measurement with missing values
BACKGROUND Gene expression time series data are usually in the form of high-dimensional arrays. Unfortunately, the data may sometimes contain missing values: for either the expression values of some genes at some time points or the entire expression values of a single time point or some sets of consecutive time points. This significantly affects the performance of many algorithms for gene expre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Applied Mathematics
سال: 2013
ISSN: 0166-218X
DOI: 10.1016/j.dam.2012.02.010